Questions

Q1.
The function f is defined by

$$
\mathrm{f}(x)=1-\frac{2}{(x+4)}+\frac{x-8}{(x-2)(x+4)}, \quad x \in \mathbb{R}, x \neq-4, x \neq 2
$$

(a) Show that $\mathrm{f}(x)=\frac{x-3}{x-2}$

The function g is defined by

$$
\mathrm{g}(x)=\frac{\mathrm{e}^{x}-3}{\mathrm{e}^{x}-2}, \quad x \in \mathbb{R}, x \neq \ln 2
$$

(b) Differentiate $g(x)$ to show that $\mathrm{g}^{\prime}(x)=\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}$
(c) Find the exact values of x for which $g^{\prime}(x)=1$

Q2.

$$
\mathrm{f}(x)=\frac{4 x-5}{(2 x+1)(x-3)}-\frac{2 x}{x^{2}-9}, \quad x \neq \pm 3, x \neq-\frac{1}{2}
$$

(a) Show that

$$
\mathrm{f}(x)=\frac{5}{(2 x+1)(x+3)}
$$

The curve C has equation $y=f(x)$. The point

$$
P\left(-1,-\frac{5}{2}\right) \text { lies onC. }
$$

(b) Find an equation of the normal to C at P.

Q3.

$$
\mathrm{f}(x)=\frac{2 x+2}{x^{2}-2 x-3}-\frac{x+1}{x-3}
$$

(a) Express $\mathrm{f}(x)$ as a single fraction in its simplest form.
(b) Hence show that $\mathrm{f}^{\prime}(x)=\frac{2}{(x-3)^{2}}$

Q4.
Given that $\frac{2 x^{2}-x^{\frac{3}{2}}}{\sqrt{x}}$ can be written in the form $2 x^{p}-x^{q}$,
(a) write down the value of p and the value of q.

Given that $y=5 x^{4}-3+\frac{2 x^{2}-x^{\frac{3}{2}}}{\sqrt{x}}$,
(b) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, simplifying the coefficient of each term.

Q5.
(a) Express

$$
\frac{4 x-1}{2(x-1)}-\frac{3}{2(x-1)(2 x-1)}
$$

as a single fraction in its simplest form.

Given that

$$
f(x)=\frac{4 x-1}{2(x-1)}-\frac{3}{2(x-1)(2 x-1)}-2, \quad x>1,
$$

(b) show that

$$
f(x)=\frac{3}{2 x-1}
$$

(c) Hence differentiate $f(x)$ and find $f^{\prime}(2)$

Q6.

$$
\mathrm{h}(x)=\frac{2}{x+2}+\frac{4}{x^{2}+5}-\frac{18}{\left(x^{2}+5\right)(x+2)}, \quad x \geq 0
$$

(a) Show that $\mathrm{h}(x)=\frac{2 x}{x^{2}+5}$
(b) Hence, or otherwise, find $\mathrm{h}^{\prime}(x)$ in its simplest form.

Figure 2
Figure 2 shows a graph of the curve with equation $y=h(x)$.
(c) Calculate the range of $\mathrm{h}(x)$.

Q7.
The functions f and g are defined by

$$
\begin{gathered}
\mathrm{f}: x^{x^{2}} 3 x+\ln x, \quad x>0, \quad x \in \mathbb{R} \\
\mathrm{~g}: x^{x^{2}} \mathrm{e} \frac{\mathrm{~d}}{\mathrm{~d} x}, \quad x \in \mathbb{R}
\end{gathered}
$$

(a) Write down the range of g .
(b) Show that the composite function fg is defined by

$$
\mathrm{fg}: x^{x^{2}} x 2+3 \frac{\mathrm{~d}}{\mathrm{~d} x}, \quad x \in \mathbb{R}
$$

(c) Write down the range of fg.
(d) Solve the equation $\frac{\mathrm{d}}{\mathrm{dx}}[f \mathrm{~g}(x)]=x\left(x e \frac{\mathrm{~d}}{\mathrm{dx}}+2\right)$.

Q8.
Differentiate with respect to x, giving your answer in its simplest form,
(a) $x^{2} \ln (3 x)$
(b) $\frac{\sin 4 x}{x^{3}}$

Q9.
The point P is the point on the curve $x=2 \tan \left(y+\frac{\pi}{12}\right)$ with y-coordinate $\frac{\pi}{4}$.
Find an equation of the normal to the curve at P.

Q10.
(a) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point where $x=2$ on the curve with equation

$$
y=x^{2} \sqrt{ }(5 x-1)
$$

(b) Differentiate $\frac{\sin 2 x}{x^{2}}$ with respect to x.

Q11.
Find the equation of the tangent to the curve $x=\cos (2 y+\pi)$ at $\left(0, \frac{\pi}{4}\right)$.
Give your answer in the form $y=a x+b$, where a and b are constants to be found.

Q12.
The curve C has equation

$$
y=\frac{3+\sin 2 x}{2+\cos 2 x}
$$

(a) Show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 \sin 2 x+4 \cos 2 x+2}{(2+\cos 2 x)^{2}} \tag{4}
\end{equation*}
$$

(b) Find an equation of the tangent to C at the point on C where $x=\frac{\pi}{2}$.

Write your answer in the form $y=a x+b$, where a and b are exact constants.
(Total 8 marks)

Q13.
A curve C has equation

$$
y=\frac{3}{(5-3 x)^{2}}, \quad x \neq \frac{5}{3}
$$

The point P on C has x-coordinate 2. Find an equation of the normal to C at P in the form $a x+b y$ $+c=0$, where a, b and c are integers.

Q14.
(i) Given that $y=\frac{\ln \left(x^{2}+1\right)}{x}$, find $\frac{d y}{d x}$.
(ii) Given that $x=\tan y$, show that $\frac{\mathrm{d} y}{\mathrm{dx}}=\frac{1}{1+x^{2}}$.

Q15.
(a) By writing $\sec x$ as $\frac{1}{\cos x}$, show that $\frac{\mathrm{d}(\sec x)}{\mathrm{d} x}=\sec x \tan x$.

Given that $y=\mathrm{e}^{2 x} \sec 3 x$,
(b) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(4)

The curve with equation $y=\mathrm{e}^{2 x} \sec 3 x,-\frac{\pi}{6}<x<\frac{\pi}{6}$, has a minimum turning point at (a, b).
(c) Find the values of the constants a and b, giving your answers to 3 significant figures.

Q16.
(i) Differentiate with respect to x
(a) $x^{2} \cos 3 x$
(b) $\frac{\ln \left(x^{2}+1\right)}{x^{2}+1}$
(ii) A curve C has the equation

$$
y=\sqrt{ }(4 x+1), \quad x>-\frac{1}{4}, y>0
$$

The point P on the curve has x-coordinate 2 . Find an equation of the tangent to C at P in the form $a x+b y+c=0$, where a, b and c are integers.

Q17.

The curve C has equation

$$
y=(2 x-3)^{5}
$$

The point P lies on C and has coordinates ($w,-32$).

Find
(a) the value of w,
(b) the equation of the tangent to C at the point P in the form $y=m x+c$, where m and c are constants.

Q18.
(i) Differentiate with respect to x
(a) $y=x^{3} \ln 2 x$
(b) $y=(x+\sin 2 x)^{3}$

Given that $x=\cot y$,
(ii) show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-1}{1+x^{2}}$

Q19.
(a) Differentiate

$$
\frac{\cos 2 x}{\sqrt{x}}
$$

with respect to x.
(b) Show that $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sec ^{2} 3 x\right)$ can be written in the form

$$
\mu\left(\tan 3 x+\tan ^{3} 3 x\right)
$$

where μ is a constant.
(c) Given $x=2 \sin \left(\frac{y}{3}\right)$, find $\frac{\mathrm{d} y}{\mathrm{~d}}$ $\mathrm{d} x$ in terms of x, simplifying your answer.

Q20.
The curve C has equationy $=f(x)$ where

$$
f(x)=\frac{4 x+1}{x-2}, \quad x>2
$$

(a) Show that

$$
\mathrm{f}^{\prime}(x)=\frac{-9}{(x-2)^{2}}
$$

Given that P is a point on C such that $f^{\prime}(x)=-1$,
(b) find the coordinates of P.

Q21.
The curve C has equation $x=8 y \tan 2 y$
The point P has coordinates $\left(\pi, \frac{\pi}{8}\right)$
(a) Verify that P lies on C.
(b) Find the equation of the tangent to C at P in the form $a y=x+b$, where the constants a and b are to be found in terms of π.

Q22.
A curve C has equation $y=\mathrm{e}^{4 x}+x^{4}+8 x+5$
(a) Show that the x coordinate of any turning point of C satisfies the equation

$$
x^{3}=-2-e^{4 x}
$$

(b) On the axes given on page 5, sketch, on a single diagram, the curves with equations
(i) $y=x^{3}$,
(ii) $y=-2-e^{4 x}$

On your diagram give the coordinates of the points where each curve crosses the y-axis and state the equation of any asymptotes.
(c) Explain how your diagram illustrates that the equation $x^{3}=-2-e^{4 x}$ has only one root.

The iteration formula

$$
x_{n+1}=\left(-2-\mathrm{e}^{4 x_{n}}\right) \frac{1}{3}, \quad x_{0}=-1
$$

can be used to find an approximate value for this root.
(d) Calculate the values of x_{1} and x_{2}, giving your answers to 5 decimal places.
(e) Hence deduce the coordinates, to 2 decimal places, of the turning point of the curve C.

Q23.
(i) (a) Show that $2 \tan x-\cot x=5 \operatorname{cosec} x$ may be written in the form

$$
a \cos ^{2} x+b \cos x+c=0
$$

stating the values of the constants a, b and c.
(b) Hence solve, for $0 \leq x<2 \pi$, the equation

$$
2 \tan x-\cot x=5 \operatorname{cosec} x
$$

giving your answers to 3 significant figures.
(ii) Show that

$$
\tan \theta+\cot \theta \equiv \lambda \operatorname{cosec} 2 \theta, \quad \theta \pm \frac{n \pi}{2}, n \in \mathbb{Z}
$$

stating the value of the constant λ.

Q24.
The mass, m grams, of a leaf t days after it has been picked from a tree is given by

$$
m=p e^{-k t}
$$

where k and p are positive constants.
When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.
(a) Write down the value of p.
(b) Show that $k=\frac{1}{4} \ln 3$.
(c) Find the value of t when $\frac{\mathrm{d} m}{\mathrm{~d} t}=-0.6 \ln 3$.

Q25.

Figure 1
Figure 1 shows a sketch of the curve C with the equation $y=\left(2 x^{2}-5 x+2\right) \mathrm{e}^{-x}$.
(a) Find the coordinates of the point where C crosses the y-axis.
(b) Show that C crosses the x-axis at $x=2$ and find the x-coordinate of the other point where C crosses the x-axis.
(c) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(d) Hence find the exact coordinates of the turning points of C.

Q26.
A rare species of primrose is being studied. The population, P, of primroses at time t years after the study started is modelled by the equation

$$
P=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}}
$$

$$
t \geq 0, t \in \mathbb{R}
$$

(a) Calculate the number of primroses at the start of the study.
(b) Find the exact value of t when $P=250$, giving your answer in the form $a \ln (b)$ where a and b are integers.
(c) Find the exact value of $\mathrm{dP} / \mathrm{dt}$ when $t=10$. Give your answer in its simplest form.
(d) Explain why the population of primroses can never be 270

Q27.

$$
f(x)=25 x^{2} e^{2 x}-16, \quad x \in \mathbb{R}
$$

(a) Using calculus, find the exact coordinates of the turning points on the curve with equationy $=f(x)$.
(b) Show that the equation $\mathrm{f}(x)=0$ can be written as $x= \pm \frac{4}{5} \mathrm{e}^{-x}$

The equation $\mathrm{f}(x)=0$ has a root α, where $\alpha=0.5$ to 1 decimal place.
(c) Starting with $x_{0}=0.5$, use the iteration formula

$$
x_{n+1}=\frac{4}{5} \mathrm{e}^{-x_{n}}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 3 decimal places.
(d) Give an accurate estimate for α to 2 decimal places, and justify your answer.

Q28.

Figure 1
Figure 1 shows a sketch of the curve C which has equation

$$
y=\mathrm{e}^{x / 3} \sin 3 x, \quad-\frac{\pi}{3} \leqslant x \leqslant \frac{\pi}{3}
$$

(a) Find the x coordinate of the turning point P on C, for which $x>0$ Give your answer as a multiple of π.
(b) Find an equation of the normal to C at the point where $x=0$

Q29.
(a) Differentiate with respect to x,
(i) $x^{\frac{1}{2}} \ln (3 x)$
(ii) $\frac{1-10 x}{(2 x-1)^{5}}$, giving your answer in its simplest form.
(b) Given that $x=3 \tan 2 y$ find $d y / d x$ in terms of x.

Q30.
Given that
$x=\sec ^{2} 3 y, \quad 0<y<\frac{\pi}{6}$
(a) find $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of y.
(b) Hence show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{6 x(x-1)^{\frac{1}{2}}}
$$

(c) Find an expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
$\overline{\mathrm{d} x^{2}}$ in terms of x. Give your answer in its simplest form.
(Total 10 marks)

Q31.
Joan brings a cup of hot tea into a room and places the cup on a table. At time t minutes after Joan places the cup on the table, the temperature, $\theta^{\circ} \mathrm{C}$, of the tea is modelled by the equation

$$
\theta=20+A e^{-k t}
$$

where A and k are positive constants.
Given that the initial temperature of the tea was $90^{\circ} \mathrm{C}$,
(a) find the value of A.

The tea takes 5 minutes to decrease in temperature from $90^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
(b) Show that $k=\frac{1}{5} \ln 2$.
(c) Find the rate at which the temperature of the tea is decreasing at the instant when $t=10$. Give your answer, in ${ }^{\circ} \mathrm{C}$ per minute, to 3 decimal places.

Q32.

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y=f(x)$, where

$$
f(x)=(8-x) \ln x, \quad x>0
$$

The curve cuts the x-axis at the points A and B and has a maximum turning point at Q, as shown in Figure 1.
(a) Write down the coordinates of A and the coordinates of B.
(b) Find $\mathrm{f}^{\prime}(x)$.
(c) Show that the x-coordinate of Q lies between 3.5 and 3.6
(d) Show that the x-coordinate of Q is the solution of
$x=\frac{8}{1+\ln x}$

To find an approximation for the x-coordinate of Q, the iteration formula
$x_{n+1}=\frac{8}{1+\ln x_{n}}$
is used.
(e) Taking $x_{0}=3.55$, find the values of x_{1}, x_{2} and x_{3}.

Give your answers to 3 decimal places.

Q33.

Figure 2
Figure 2 shows a sketch of part of the curve with equation

$$
y=2 \cos \left(\frac{1}{2} x^{2}\right)+x^{3}-3 x-2
$$

The curve crosses the x-axis at the point Q and has a minimum turning point at R.
(a) Show that the x coordinate of Q lies between 2.1 and 2.2
(b) Show that the x coordinate of R is a solution of the equation

$$
x=\sqrt{1+\frac{2}{3} x \sin \left(\frac{1}{2} x^{2}\right)}
$$

Using the iterative formula

$$
x_{n+1}=\sqrt{1+\frac{2}{3} x_{n} \sin \left(\frac{1}{2} x_{n}^{2}\right)}, \quad x_{0}=1.3
$$

(c) find the values of x_{1} and x_{2} to 3 decimal places.

Figure 2
Figure 2 shows a sketch of part of the curve with equation $y=f(x)$ where

$$
f(x)=\left(x^{2}+3 x+1\right) \mathrm{e} x^{2}
$$

The curve cuts the x-axis at points A and B as shown in Figure 2.
(a) Calculate the x coordinate of A and the x coordinate of B, giving your answers to 3 decimal places.
(b) Find $\mathrm{f}^{\prime}(x)$.

The curve has a minimum turning point at the point P as shown in Figure 2.
(c) Show that the x coordinate of P is the solution of

$$
x=-\frac{3\left(2 x^{2}+1\right)}{2\left(x^{2}+2\right)}
$$

(d) Use the iteration formula

$$
x_{n+1}=-\frac{3\left(2 x_{n}^{2}+1\right)}{2\left(x_{n}^{2}+2\right)}, \quad \text { with } x_{0}=-2.4,
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 3 decimal places.

The x coordinate of P is α.
(e) By choosing a suitable interval, prove that $\alpha=-2.43$ to 2 decimal places.

Q35.
(a) Express $2 \cos 3 x-3 \sin 3 x$ in the form $R \cos (3 x+\alpha)$, where R and α are constants, $R>$ 0 and $0<\alpha<\frac{\pi}{2}$.

Give your answers to 3 significant figures.

$$
\mathrm{f}(x)=\mathrm{e}^{2 x} \cos 3 x
$$

(b) Show that $\mathrm{f}^{\prime}(x)$ can be written in the form

$$
\mathrm{f}^{\prime}(x)=R \mathrm{e}^{2 x} \cos (3 x+\alpha)
$$

where R and α are the constants found in part (a).
(c) Hence, or otherwise, find the smallest positive value of x for which the curve with equation y $=f(x)$ has a turning point.

Q36.
(a) Given that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\cos x)=-\sin x
$$

show that $\frac{d}{d x}(\sec x) \sec x \tan x$.

Given that

$$
x=\sec 2 y
$$

(b) find $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of y.
(c) Hence find $\frac{d y}{d x}$ in terms of x.

