GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper A

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

C1 Paper A - Marking Guide

1. (a) $=\frac{21}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=3 \sqrt{7}$

M1 A1
(b) $=\frac{1}{\sqrt[3]{8}}=\frac{1}{2}$

M1 A1 (4)
2. AP: $a=27, l=67$

B1

$$
\begin{aligned}
& n=30-9=21 \\
S_{21}= & \frac{21}{2}(27+67) \\
= & \frac{21}{2} \times 94=987
\end{aligned}
$$

B1
M1
A1
(4)
3. $\frac{6 x^{2}-1}{2 \sqrt{x}}=3 x^{\frac{3}{2}}-\frac{1}{2} x^{-\frac{1}{2}}$

M1 A1
$\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{\frac{3}{2}}-\frac{1}{2} x^{-\frac{1}{2}}\right)=\frac{9}{2} x^{\frac{1}{2}}+\frac{1}{4} x^{-\frac{3}{2}}$
M1 A2
4. (a) $x^{2}+3 x-10>0$
$\begin{aligned} & x^{2}+3 x-10>0 \\ & (x+5)(x-2)>0\end{aligned}$
$x<-5$ or $x>2$$\xrightarrow[-5]{\sim}$
(b) $3 x-2<x+3 \Rightarrow 2 x<5$

M1
A1
both satisfied when $x<-5$ or $2<x<\frac{5}{2}$
M1

$$
x<\frac{5}{2}
$$

A1
A1
(6)
5. (a) $u_{2}=k^{2}-1$

B1
$u_{3}=\left(k^{2}-1\right)^{2}-1=k^{4}-2 k^{2}$
M1 A1
(b) $k^{4}-2 k^{2}+k^{2}-1=11$
$k^{4}-k^{2}-12=0$
M1
$\left(k^{2}+3\right)\left(k^{2}-4\right)=0$
$k^{2}=-3$ (no solutions) or 4
M1
$k= \pm 2$
A1
A1
(7)
6. (a) $\begin{aligned} & (x+2 k)^{2}-(2 k)^{2}-k=0 \\ & (x+2 k)^{2}=4 k^{2}+k\end{aligned}$

M1
A1
$x+2 k= \pm \sqrt{4 k^{2}+k}$
M1
$x=-2 k \pm \sqrt{4 k^{2}+k}$
A1
(b) no real roots if $4 k^{2}+k<0$
$k(4 k+1)<0$, critical values: $-\frac{1}{4}, 0$
$\therefore \quad-\frac{1}{4}<k<0$

7. (a) stretch by factor of 3 in y-direction about x-axis
(b)
asymptotes: $x=0$ and $y=0$

B2
B1

M1
$3=c x-3 x^{2}$
$3 x^{2}-c x+3=0$
tangent \therefore equal roots, $b^{2}-4 a c=0$
$(-c)^{2}-(4 \times 3 \times 3)=0 \quad$ M1 A1
$c^{2}=36, \quad c= \pm 6 \quad$ A1
(9)
8. (a) $\operatorname{grad}=\frac{7-4}{9-7}=\frac{3}{2}$

M1 A1
$\therefore y-4=\frac{3}{2}(x-7)$
M1
$2 y-8=3 x-21$
$3 x-2 y-13=0$
A1
(b) $y=8 x$

B1
(c) at $R, \quad 3 x-2(8 x)-13=0$
$x=-1 \quad \therefore R(-1,-8)$
M1 A1
$O P=\sqrt{7^{2}+4^{2}}=\sqrt{49+16}=\sqrt{65}$
M1 A1
$O R=\sqrt{(-1)^{2}+(-8)^{2}}=\sqrt{1+64}=\sqrt{65} \quad \therefore O P=O R$
A1
9. (a) $y=\int\left(6-4 x-3 x^{2}\right) \mathrm{d} x, y=6 x-2 x^{2}-x^{3}+c$

M1 A2
$(0,0) \quad \therefore c=0$
$y=6 x-2 x^{2}-x^{3}$
M1
A1
(b) $\quad 6 x-2 x^{2}-x^{3}=0, \quad x\left(6-2 x-x^{2}\right)=0$ M1
$x=0($ at $O)$ or $6-2 x-x^{2}=0$
at $A, B: \quad x=\frac{2 \pm \sqrt{4+24}}{-2}=\frac{2 \pm 2 \sqrt{7}}{-2}=-1 \pm \sqrt{7}$
$A(-1-\sqrt{7}, 0), B(-1+\sqrt{7}, 0)$
$\therefore A B=(-1+\sqrt{7})-(-1-\sqrt{7})=2 \sqrt{7} \quad[k=2]$
M1 A1
10. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=1-3 x^{-2}$

M1 A1
$\operatorname{grad}=1-3(1)^{-2}=1-3=-2$
A1
(b) $\quad x=1 \quad \therefore y=4$
$\operatorname{grad}=\frac{-1}{-2}=\frac{1}{2}$
M1 A1
$\therefore y-4=\frac{1}{2}(x-1)$
M1
$y=\frac{1}{2} x+\frac{7}{2}$
A1
(c) $x+\frac{3}{x}=\frac{1}{2} x+\frac{7}{2}$
$2 x^{2}+6=x^{2}+7 x \quad$ M1
$x^{2}-7 x+6=0, \quad(x-1)(x-6)=0$
M1
$x=1($ at $P), 6$
A1
$\therefore\left(6,6 \frac{1}{2}\right)$
A1
(11)

Performance Record - C1 Paper A

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	surds, indices	${ }_{\text {AP }}$	diff.	inequals	$\begin{gathered} \text { recur. } \\ \text { relation } \end{gathered}$	$\begin{aligned} & \text { compl. } \\ & \text { square } \end{aligned}$	$\begin{array}{\|l\|l\|} \substack{\text { rasform. } \\ \text { ron }} \end{array}$	$\begin{gathered} \text { straight } \\ \text { lines } \end{gathered}$	integr.	diff, normal	
Marks	4	4	5	6	7	8	9	10	11	11	75
Student											

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper B

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

C1 Paper B - Marking Guide

1. $\mathrm{f}(x)=x+6 \sqrt{x}+9+1-6 \sqrt{x}+9 x$

M1 A1 $=10 x+10, \quad a=10, b=10$

A1
(3)
2. quadratic, coeff of $x^{2}=1$, minimum $(-2,5)$
$\therefore y=(x+2)^{2}+5$
M1 A1
$=x^{2}+4 x+9, \quad a=4, b=9$
M1 A1
(4)
3. (a) $u_{1}=2+k$
$u_{3}=8+3 k \quad$ B1
$u_{1}=u_{3} \quad \therefore 2+k=8+3 k$
$k=-3$
M1
A1
(b) $u_{5}=2^{5}-3(5)=32-15=17$

M1 A1
(5)
4. $y=\int\left(2 x^{3}+1\right) \mathrm{d} x$
$y=\frac{1}{2} x^{4}+x+c \quad$ M1 A2
$x=0, y=3 \therefore c=3 \quad$ B1
$y=\frac{1}{2} x^{4}+x+3$
when $x=2, y=8+2+3=13$
M1 A1
5. (a) $=x\left(4-3 x-x^{2}\right)$

M1
$=x(1-x)(4+x)$
M1 A1
(b)

B3
(6)
6. $x=0 \Rightarrow y=-6 \quad \therefore(0,-6)$
$y=0 \Rightarrow x=12 \quad \therefore(12,0)$
B1
mid-point $=\left(\frac{0+12}{2}, \frac{-6+0}{2}\right)=(6,-3)$
M1 A1
dist. from $O=\sqrt{6^{2}+(-3)^{2}}=\sqrt{36+9}=\sqrt{45}$
M1

$$
\begin{equation*}
=\sqrt{9 \times 5}=3 \sqrt{5} \tag{6}
\end{equation*}
$$

M1 A1
7. (a) (i) $2^{x+2}=2^{2} \times 2^{x}=4 y$

M1 A1
(ii) $2^{3-x}=\frac{2^{3}}{2^{x}}=\frac{8}{y}$

M1 A1
(b) $\quad 2^{x+2}+2^{3-x}=33 \Rightarrow 4 y+\frac{8}{y}=33$

$$
\begin{array}{ll}
4 y^{2}+8=33 y & \text { M1 } \\
4 y^{2}-33 y+8=0 & \text { A1 }
\end{array}
$$

(c) $(4 y-1)(y-8)=0$
$y=\frac{1}{4}, 8$
A1
$2^{x}=\frac{1}{4}, 8$
$x=-2,3$
A2
8. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{\frac{1}{2}}$

M1 A1

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{3}{2} x^{-\frac{1}{2}}
$$

A1

(b) LHS $=4 x^{2}\left(\frac{3}{2} x^{-\frac{1}{2}}\right)-3\left(2 x^{\frac{3}{2}}-1\right)$

$$
\begin{aligned}
& =6 x^{\frac{3}{2}}-6 x^{\frac{3}{2}}+3 \\
& =3 \quad[k=3]
\end{aligned}
$$

M1
A1
(c) $=\int\left(2 x^{\frac{3}{2}}-1\right)^{2} \mathrm{~d} x$

$$
\begin{array}{ll}
=\int\left(4 x^{3}-4 x^{\frac{3}{2}}+1\right) \mathrm{d} x & \text { M1 A1 } \\
=x^{4}-\frac{8}{5} x^{\frac{5}{2}}+x+c & \text { M1 A3 } \tag{11}
\end{array}
$$

9.

(a) $\quad \begin{array}{ll}a+d=26 & \\ & a+4 d=41 \\ & \\ & \text { subtracting, }, \\ & 3 d=15 \\ & d=5\end{array}$
M1
A1
M1
A1
(b) $a=21$
B1
$u_{12}=21+(11 \times 5)=76$
M1 A1
(c) $\frac{n}{2}[42+5(n-1)]=\frac{n}{2}[-24+7(n-1)]$
M1 A1
$n(5 n+37)=n(7 n-31)$
$2 n(n-34)=0 \quad$ M1
$n>0 \quad \therefore n=34 \quad$ A1
10. (a) $x^{2}-3 x+5=2 x+1$
$x^{2}-5 x+4=0$
$(x-1)(x-4)=0$

M1
M1
$x=1,4$
A1
when $x=1, y=2(1)+1=3$
$\therefore P(1,3), Q(4,9)$
A1
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-3$

M1
$\operatorname{grad}=-1$
$\therefore y-3=-(x-1) \quad[y=4-x]$
A1
$\operatorname{grad}=5$
$\therefore y-9=5(x-4)$
M1
$y-9=5 x-20$
$y=5 x-11$
A1
(d) $4-x=5 x-11$

M1
$x=\frac{5}{2}$
$\therefore\left(\frac{5}{2}, \frac{3}{2}\right)$
A1
A1
Performance Record - C1 Paper B

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	algebra	compl. square	sequence	integr.	$\begin{aligned} & \hline \text { curve } \\ & \text { sketch } \end{aligned}$	$\begin{aligned} & \text { straight } \\ & \text { line } \end{aligned}$	indices	$\begin{array}{\|c} \hline \text { diff., } \\ \text { integr. } \end{array}$	AP	diff., tangents	
Marks	3	4	5	6	6	6	10	11	11	13	75
Student											

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper C

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

C1 Paper C - Marking Guide

1. $x=\frac{4 \pm \sqrt{16+32}}{2}$

$$
=\frac{4 \pm 4 \sqrt{3}}{2}=2 \pm 2 \sqrt{3}
$$

M1 A1 (3)
2. $x^{2}-3 x+2<20$
$x^{2}-3 x-18<0$
$(x+3)(x-6)<0$
$-3<x<6$

M1
M1
M1
A1
(4)
3. $\mathrm{f}(x)=\int\left(4 x^{\frac{1}{3}}-5\right) \mathrm{d} x$

$$
\begin{array}{ll}
\mathrm{f}(x)=3 x^{\frac{4}{3}}-5 x+c & \mathrm{M} 1 \mathrm{~A} 2 \\
(8,7) \therefore 7=3(\sqrt[3]{8})^{4}-40+c & \mathrm{M} 1 \\
7=48-40+c & \\
c=-1 & \mathrm{M} 1 \\
\mathrm{f}(x)=3 x^{\frac{4}{3}}-5 x-1 & \mathrm{~A} 1
\end{array}
$$

(6)
4. (a) $=\left(\frac{49}{9}\right)^{-\frac{1}{2}}=\sqrt{\frac{9}{49}}=\frac{3}{7}$

M1 A1
(b) $1+x=\sqrt{3} x$

$$
1=x(\sqrt{3}-1)
$$

M1
$x=\frac{1}{\sqrt{3}-1}$
$x=\frac{1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}=\frac{\sqrt{3}+1}{3-1}=\frac{1}{2}+\frac{1}{2} \sqrt{3}$
M1 A1 (6)
5. (a) $=1-\frac{3}{2} x^{-\frac{3}{2}}$

M1 A2
(b) $=\frac{1}{2} x^{2}+5 x+6 x^{\frac{1}{2}}+c$

M1 A3
6. (a) $=3 \sqrt{3}-\frac{8}{\sqrt{3}}=3 \sqrt{3}-\frac{8}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$

B1 M1
$=3 \sqrt{3}-\frac{8}{3} \sqrt{3}=\frac{1}{3} \sqrt{3}$
A1
(b) $\begin{aligned} & x^{\frac{3}{2}}=8 x^{-\frac{1}{2}} \\ & x^{2}=8\end{aligned}$

M1 A1 $x= \pm \sqrt{8}= \pm 2 \sqrt{2} \quad$ M1 A1
(7)
7. (a) $y+5=2(x-4)$

M1
$y=2 x-13$
A1
(b) $3 x-y=4 \Rightarrow y=3 x-4 \therefore \operatorname{grad}=3$

$$
\operatorname{grad} l_{2}=\frac{-1}{3}=-\frac{1}{3}
$$

M1 A1
$\therefore y-0=-\frac{1}{3}(x-3) \quad\left[y=-\frac{1}{3} x+1\right]$
A1
(c) $2 x-13=-\frac{1}{3} x+1$
$x=6$
$\therefore(6,-1)$
M1 A1
A1
(8)
8. (a) (i) 3

B1
(ii) 1

B1
(b) (i)

(ii)

B3 B3
(8)
9.
(a) $S_{n}=a+(a+d)+(a+2 d)+\ldots+[a+(n-1) d]$
B1
$S_{n}=[a+(n-1) d]+[a+(n-2) d]+[a+(n-3) d]+\ldots+a$
M1
adding, $\quad 2 S_{n}=n[2 a+(n-1) d]$
M1
$S_{n}=\frac{1}{2} n[2 a+(n-1) d]$
A1
(b) $=16+(4 \times 2)=24$
M1 A1
(c) $=\frac{5}{2}[32+(4 \times 2)]=\frac{5}{2} \times 40=100$
M1 A1
(d) $\frac{n}{2}[32+2(n-1)]=250$
M1
$n^{2}+15 n-250=0$
$(n+25)(n-10)=0$
A1
$n>0 \quad \therefore n=10$
M1
A1
10. (a)

(b) $\quad \mathrm{f}(x)=(x+2)\left(x^{2}+4 x+4\right)$
$\mathrm{f}(x)=x^{3}+4 x^{2}+4 x+2 x^{2}+8 x+8$
M1
$\mathrm{f}(x)=x^{3}+6 x^{2}+12 x+8$
A1
$\mathrm{f}^{\prime}(x)=3 x^{2}+12 x+12$
M1 A1
(c) $\operatorname{grad}=3-12+12=3$
$\therefore y-1=3(x+1) \quad[y=3 x+4]$
B1
M1 A1
(d) $\operatorname{grad} m=3$

$$
\begin{array}{rlr}
\therefore & 3 x^{2}+12 x+12=3 & \\
& x^{2}+4 x+3=0 & \\
& (x+1)(x+3)=0 & \text { M1 } \\
& x=-1(\text { at } P),-3 & \text { A1 } \\
x= & -3 \therefore y=-1 & \\
\therefore & y+1=3(x+3) & \text { M1 } \\
& y=3 x+8 & \text { A1 }
\end{array}
$$

Performance Record - C1 Paper C

Question no.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Total
Topic(s)	quad. formula	inequal.	integr.	indices, surds							
Marks				diff., integr. surds, indices	straight lines						
	3	4	6	6	7	7	8	8	12	14	75
Student											

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper D

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

C1 Paper D - Marking Guide

1. $=\sqrt{25 \times 2}+3 \sqrt{4 \times 2}=5 \sqrt{2}+(3 \times 2 \sqrt{2})$
$=11 \sqrt{2}$
M1 A1
A1
(3)
2. $=6 x-\frac{1}{2} x^{-\frac{1}{2}}-\frac{1}{2} x^{-2}$

M1 A3
3. (a) $50,48,46,44$

B1
(b) AP: $a=50, d=-2$
$S_{20}=\frac{20}{2}[100+(19 \times-2)]$
B1
$=10 \times 62=620 \quad \mathrm{~A} 1$
(4)
4. (a) equal roots $\therefore b^{2}-4 a c=0$

$$
\begin{aligned}
& (-6)^{2}-(4 \times 1 \times k)=0 \\
& 36-4 k=0 \\
& k=9
\end{aligned}
$$

M1
A1
(b) $(2 x-1)(x-4)<0$
critical values: $\frac{1}{2}, 4$

$$
\frac{1}{2}<x<4
$$

(6)
5. $x+y=2 \Rightarrow y=2-x$

M1
sub. into $3 x^{2}-2 x+y^{2}=2$
$3 x^{2}-2 x+(2-x)^{2}=2$
M1
$2 x^{2}-3 x+1=0$
A1
$(2 x-1)(x-1)=0$
$x=\frac{1}{2}, 1$
$\therefore x=\frac{1}{2}, y=\frac{3}{2}$ or $x=1, y=1$
M1 A1
6. $y=\int\left(3 \sqrt{x}-x^{2}\right) d x$
$y=2 x^{\frac{3}{2}}-\frac{1}{3} x^{3}+c$
M1 A2
$x=1, y=\frac{2}{3} \quad \therefore \quad \frac{2}{3}=2-\frac{1}{3}+c$ $c=-1$

M1
$y=2 x^{\frac{3}{2}}-\frac{1}{3} x^{3}-1$ A1
when $x=4, \quad y=2(\sqrt{4})^{3}-\frac{1}{3}\left(4^{3}\right)-1$ M1

$$
\begin{equation*}
y=16-21 \frac{1}{3}-1=-6 \frac{1}{3} \tag{7}
\end{equation*}
$$

A1
7. (a) $2 p-(12-p)=(4 p-5)-2 p$

M1
$p=7$
A1
(b) $\quad a=12-7=5, a+d=2 \times 7=14 \quad \therefore d=9$

$$
u_{6}=5+(5 \times 9)=5+45=50
$$

B1
M1 A1
(c) $=\frac{15}{2}[10+(14 \times 9)]=\frac{15}{2} \times 136=1020$

M1 A1
(d) $5+9(n-1)<400$

M1
$n<\frac{395}{9}+1 \quad$ M1
$n<44 \frac{8}{9} \quad \therefore 44$ terms A1
8.
$(2 x-1)(x+2)=0$

M1
$x=-2, \frac{1}{2}$
A1
(b)

B2
(c) $(0,-2)$,

B1
$(-4,0),(1,0)$
M1 A1
(d) $\mathrm{f}(x-1)=2(x-1)^{2}+3(x-1)-2$ $=2 x^{2}-x-3$
$\therefore a=2, b=-1, c=-3$
M1 A1
A1
9.
$x\left(x^{2}+3 x-4\right)=0$
$x(x+4)(x-1)=0$
$x=0($ at $O),-4,1$
$\therefore(-4,0),(1,0)$
M1
M1
A1
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+6 x-4$
M1 A1
$\operatorname{grad}=-4$
M1
$\therefore y=-4 x$
(c) $x^{3}+3 x^{2}-4 x=-4 x$
A1
(c) $\quad \begin{aligned} & x^{3}+3 x^{2}-4 x=-4 x \\ & x^{3}+3 x^{2}=0\end{aligned}$
$x^{2}(x+3)=0 \quad$ M1
$x=0($ at $O),-3$
A1
$\therefore(-3,12)$
A1
(11)
10. (a) $y=0 \quad \therefore x=7 \Rightarrow A(7,0)$

M1 A1

(b) $\quad l_{1}: y=14-2 x \therefore \operatorname{grad}=-2$

B1
$l_{2}: y-6=-2(x+6)$
M1
$y=-2 x-6$
A1
(c) $y=0 \quad \therefore x=-3 \Rightarrow C(-3,0)$ B1
(d) $\operatorname{grad} C D=\frac{-1}{-2}=\frac{1}{2}$ M1
eqn $C D: \quad y-0=\frac{1}{2}(x+3)$
M1 A1
intersection with $l_{1}: \quad \frac{1}{2}(x+3)=14-2 x$

$$
\begin{aligned}
& x=5 \\
& y=14-(2 \times 5)=4
\end{aligned}
$$

$\therefore D(5,4)$
M1
$A C=7-(-3)=10$
area $=\frac{1}{2} \times 10 \times 4=20$

Performance Record - C1 Paper D

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	surds	diff.	recur. relation	rep. root, inequal.	simul. eqn	integr.	AP	transform.	$\begin{gathered} \text { diff., } \\ \text { tangent } \end{gathered}$	straight lines	
Marks	3	4	4	6	7	7	10	10	11	13	75
Student											

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper E

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

C1 Paper E - Marking Guide

1. (a) $=\frac{18}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=6 \sqrt{3}$

M1 A1
(b) $=4-2 \sqrt{3}-4 \sqrt{3}+6=10-6 \sqrt{3}$

M1 A1 (4)
2. $3 x^{2}-5=2 x$

M1
$3 x^{2}-2 x-5=0$
$(3 x-5)(x+1)=0$
M1
$x=-1, \frac{5}{3}$
A2
(4)
3. $x-5 y=7 \Rightarrow y=\frac{1}{5} x-\frac{7}{5} \quad \therefore \operatorname{grad}=\frac{1}{5}$

B1
$\operatorname{grad} m=\frac{-1}{\frac{1}{5}}=-5$
M1 A1
$\begin{aligned} \therefore & y-1=-5(x+4) \\ & y=-5 x-19\end{aligned}$
M1
A1
(5)
4. (a) $1,7,25,79$

B2
(b) $7=a+b$

M1
$25=7 a+b$
A1
subtracting, $\quad 6 a=18$ $a=3, b=4$

M1
A1
(6)
5. (a) $8 x-x^{\frac{5}{2}}=0$
$x\left(8-x^{\frac{3}{2}}\right)=0$
$x=0($ at $O)$ or $x^{\frac{3}{2}}=8$
M1
$\therefore x=(\sqrt[3]{8})^{2}=4$
M1 A1
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=8-\frac{5}{2} x^{\frac{3}{2}}$

M1 A1
$\operatorname{grad}=8-\left(\frac{5}{2} \times 8\right)=-12$
M1 A1 (7)
6. (a) $\mathrm{f}(x)=2\left[x^{2}-2 x\right]+1$

M1
$=2\left[(x-1)^{2}-1\right]+1$
$=2(x-1)^{2}-1, \quad a=2, b=-1, c=-1$
M1
$=2(x-1)^{2}-1, \quad a=2, b=-1, c=-1 \quad$ A2
(b) $x=1$

B1
(c) $2(x-1)^{2}-1=3$
$(x-1)^{2}=2 \quad$ M1
$x=1 \pm \sqrt{2} \quad$ M1 A1
(8)
7. (a) $\mathrm{f}(x)=\frac{x^{2}-8 x+16}{2 x^{\frac{1}{2}}}$

M1
$\mathrm{f}(x)=\frac{1}{2} x^{\frac{3}{2}}-4 x^{\frac{1}{2}}+8 x^{-\frac{1}{2}}, \quad A=\frac{1}{2}, B=-4, C=8$
A2
(b) $\mathrm{f}^{\prime}(x)=\frac{3}{4} x^{\frac{1}{2}}-2 x^{-\frac{1}{2}}-4 x^{-\frac{3}{2}}$

M1 A2
$\mathrm{f}^{\prime}(x)=\frac{1}{4} x^{-\frac{3}{2}}\left(3 x^{2}-8 x-16\right)$
M1
$\mathrm{f}^{\prime}(x)=\frac{1}{4} x^{-\frac{3}{2}}(3 x+4)(x-4)=\frac{(3 x+4)(x-4)}{4 x^{\frac{3}{2}}}$
M1 A1 (9)
8. (a) translation by 1 unit in the positive x-direction
(b)

B3
(c) $\frac{1}{x-1}=2+\frac{1}{x}$

$$
\begin{array}{ll}
x=2 x(x-1)+(x-1) & \text { M1 } \\
2 x^{2}-2 x-1=0 & \text { A1 } \\
x=\frac{2 \pm \sqrt{4+8}}{4} & \text { M1 } \\
x=\frac{2 \pm 2 \sqrt{3}}{4} & \text { M1 } \\
x=\frac{1}{2} \pm \frac{1}{2} \sqrt{3} & \text { A1 }
\end{array}
$$

9. (a) $S_{6}=\frac{6}{2}[3000+(5 \times-x)]=8100$

M1 A1
$3000-5 x=2700, \quad x=60$
M1 A1
(b) $=1500-(7 \times 60)=1500-420=£ 1080$

M1 A1
(c) $\quad S_{n}=\frac{n}{2}[3000-60(n-1)]$

M1
$=n[1500-30(n-1)]$
$=30 n[50-(n-1)]=30 n(51-n) \quad[k=30]$
M1 A1
(d) the value of sales in a month would become negative which is not possible

B1
10. (a) $y=\int\left(3 x^{2}+4 x+k\right) \mathrm{d} x$

$$
y=x^{3}+2 x^{2}+k x+c \quad \text { M1 A2 }
$$

$(0,-2) \quad \therefore c=-2$
B1
$(2,18) \quad \therefore 18=8+8+2 k-2$
M1
$k=2$
A1
$y=x^{3}+2 x^{2}+2 x-2$
A1
(b) $x^{3}+2 x^{2}+2 x-2=x-2$
$x^{3}+2 x^{2}+x=0$
$x\left(x^{2}+2 x+1\right)=0$
M1
$x(x+1)^{2}=0$
M1
repeated root \therefore tangent
A1
point of contact where $x=-1$
M1
$\therefore(-1,-3)$
A1
Performance Record - C1 Paper E

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	surds	quad.	straight lines	sequence, recur. relation	indices, diff.	compl. square	diff.	transform. quad. formula	AP	integr., rep. root	
Marks	4	4	5	6	7	8	9	10	10	12	75
Student											

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper F

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

C1 Paper F - Marking Guide

1. $x^{4}-5 x^{2}-14=0, \quad\left(x^{2}+2\right)\left(x^{2}-7\right)=0$

M1
$x^{2}=-2$ (no solutions) or 7
A1
$x= \pm \sqrt{7}$
A1
(3)
2. $=\frac{2}{3 \sqrt{5}+7} \times \frac{3 \sqrt{5}-7}{3 \sqrt{5}-7}=\frac{6 \sqrt{5}-14}{45-49}=\frac{7}{2}-\frac{3}{2} \sqrt{5}$
3. (a) $x=(\sqrt[3]{27})^{2}=3^{2}=9$
(b) $=\left(\frac{9}{4}\right)^{-\frac{1}{2}}=\sqrt{\frac{4}{9}}=\frac{2}{3}$
4. cubic, coeff of $x^{3}=1$, crosses x-axis at $(-1,0)$, touches at $(3,0)$

M1 A1
M1 A1
(4)
(3)

M2 A1

$$
\begin{aligned}
\therefore y & =(x+1)(x-3)^{2} \\
& =(x+1)\left(x^{2}-6 x+9\right) \\
& =x^{3}-6 x^{2}+9 x+x^{2}-6 x+9 \\
& =x^{3}-5 x^{2}+3 x+9 \\
\therefore \quad a & =-5, b=3, c=9
\end{aligned}
$$

M1 A1

M1
A2
(5)
5. (a)

$$
y=\frac{1}{2} x^{2}-\frac{3}{2} x^{-2}
$$

M1 A1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=x+3 x^{-3}$
M1 A1
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1-9 x^{-4}=\frac{x^{4}-9}{x^{4}}$
6. (a)

B2

B3
(b) $x^{2}-4 x+4>2 x-1$
$x^{2}-6 x+5>0$
$(x-1)(x-5)>0$

M1
M1
A1
(8)
7. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}+x^{-2}$

M1 A1
$\operatorname{grad}=\frac{1}{2}+2^{-2}=\frac{3}{4}$
M1 A1
(b) $\quad x=2 \therefore y=\frac{7}{2}$

B1
$y-\frac{7}{2}=\frac{3}{4}(x-2)$
M1
$4 y-14=3 x-6$
$3 x-4 y+8=0$
A1
(c) at $B, \operatorname{grad}=\frac{3}{4}$
$\therefore \frac{1}{2}+x^{-2}=\frac{3}{4}$
M1
$x^{2}=4, \quad x=2($ at $A),-2$
$\therefore B\left(-2, \frac{5}{2}\right)$
8. (a) $y-3=\frac{3}{2}(x-5)$
$y=\frac{3}{2} x-\frac{9}{2}$
(b) $3 x-4\left(\frac{3}{2} x-\frac{9}{2}\right)+3=0$

M1
$x=7$
A1
$\therefore B(7,6)$
A1
(c) $=\left(\frac{5+7}{2}, \frac{3+6}{2}\right)=\left(6, \frac{9}{2}\right)$

M1 A1
(d) $\quad l_{2}: y=\frac{3}{4} x+\frac{3}{4} \quad \therefore \operatorname{grad}=\frac{3}{4}$

B1
$\therefore y-\frac{9}{2}=\frac{3}{4}(x-6)$
M1
$y=\frac{3}{4} x$
when $x=0, y=0 \quad \therefore$ passes through origin
A1
A1
9.
(a) $a+2 d=5 \frac{1}{2}$
$\frac{4}{2}(2 a+3 d)=22 \frac{3}{4}$
B1
(2) $\Rightarrow 4 a+6 d=22 \frac{3}{4}$
(1) $\Rightarrow 3 a+6 d=16 \frac{1}{2}$
subtracting, $a=22 \frac{3}{4}-16 \frac{1}{2}=6 \frac{1}{4}$
M1 A1
$d=\frac{1}{2}\left(5 \frac{1}{2}-6 \frac{1}{4}\right)=-\frac{3}{8}$
M1 A1
(b) $6 \frac{1}{4}-\frac{3}{8}(n-1)>0$
M1
$50-3(n-1)>0$
$n<17 \frac{2}{3} \quad \therefore 17$ positive terms
M1 A1
(c) $=S_{17}=\frac{17}{2}\left[12 \frac{1}{2}+\left(16 \times-\frac{3}{8}\right)\right]$
M1

$$
\begin{equation*}
=\frac{17}{2}\left(12 \frac{1}{2}-6\right)=\frac{17}{2} \times \frac{13}{2}=\frac{221}{4}=55 \frac{1}{4} \tag{12}
\end{equation*}
$$

A1
10. (a) $\operatorname{grad}=8-2=6$

B1
$\therefore y-1=6(x-1)$
M1
$y=6 x-5$
A1
(b) $y=\int\left(8 x-\frac{2}{x^{3}}\right) \mathrm{d} x$
$y=4 x^{2}+x^{-2}+c \quad$ M1 A2
$(1,1) \quad \therefore 1=4+1+c$
$c=-4$
$y=4 x^{2}+x^{-2}-4$
M1
A1
(c) $4 x^{2}+x^{-2}-4=0$
$4 x^{4}-4 x^{2}+1=0$
M1
$\left(2 x^{2}-1\right)^{2}=0$
M1
$x^{2}=\frac{1}{2}$
$x= \pm \frac{1}{\sqrt{2}}$
A1
$x= \pm \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}= \pm \frac{1}{2} \sqrt{2}$
M1 A1
Performance Record - C1 Paper F

Question no.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Total
Topic(s)	quad.	surds	indices	cubic	diff. curve sketch, inequal.	diff., tangents	straight lines	AP	integr., tangent		
Marks	3	3	4	5	6	8	10	11	12	13	75
Student											

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper G

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press

C1 Paper G - Marking Guide

1. $\left(3^{2}\right)^{x}=3^{x+2}$
$2 x=x+2, \quad x=2$
M1
M1 A1 (3)
2. $2 x^{2}+x-6 \leq 0$
$(2 x-3)(x+2) \leq 0$
critical values: $-2, \frac{3}{2}$

$-2 \leq x \leq \frac{3}{2}$
A1
(4)
3. (a) $y=x^{2}-2 a x+a^{2}$

B1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-2 a=2 x-6$
M1 A1
$\therefore a=3$
A1
(b) translation by 3 units in the negative x-direction

B2
(6)
4. (a) $x^{2}-4 x+2=0$
$x=\frac{4 \pm \sqrt{16-8}}{2}=\frac{4 \pm 2 \sqrt{2}}{2}$
$x=2 \pm \sqrt{2}, \quad \therefore(2-\sqrt{2}, 0),(2+\sqrt{2}, 0)$
(b) $x^{2}-4 x+2=2 x+k, \quad x^{2}-6 x+2-k=0$
tangent \therefore equal roots, $b^{2}-4 a c=0$
$(-6)^{2}-[4 \times 1 \times(2-k)]=0 \quad$ M1 A1
$36-4(2-k)=0, \quad k=-7$
A1
5. (a)

B3
(b) $y=(2-x)\left(9-6 x+x^{2}\right)$

M1
$y=18-12 x+2 x^{2}-9 x+6 x^{2}-x^{3}$
M1
$y=18-21 x+8 x^{2}-x^{3}$
A1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-21+16 x-3 x^{2}$
M1 A1
$\operatorname{grad}=-21+32-12=-1$
$\begin{array}{rlr}\therefore y-0 & =-(x-2) & \text { M1 } \\ x+y & =2 & \text { A1 }\end{array}$
(10)
6. (a)

M1
M1
$=18-(x-3)^{2}, \quad A=18, B=-3$
(b) 18

B1
(c) $18-(x-3)^{2}=0, \quad x-3= \pm \sqrt{18}$

M1
$x=3 \pm 3 \sqrt{2}$
(d)

M1 A1

B2
7. (a) (i) $\frac{20}{2}[2 a+(19 \times 7)]=530$

$$
2 a+133=53, a=-40
$$

M1 A1
(ii) $=-40+7 k=-40+42=2$

M1 A1
(b) (i) $u_{1}=(1+k)^{2}, u_{2}=(2+k)^{2}$

B1
$(2+k)^{2}=2(1+k)^{2}$
M1
$4+4 k+k^{2}=2+4 k+2 k^{2}$
$k^{2}=2$
M1
$k>0 \quad \therefore k=\sqrt{2}$
A1
(ii) $u_{3}=(3+\sqrt{2})^{2}=9+6 \sqrt{2}+2=11+6 \sqrt{2}$

M1 A1
8. (a) $\operatorname{grad}=\frac{1-5}{4-(-2)}=-\frac{2}{3}$

M1 A1

$$
\begin{aligned}
\therefore & y-5=-\frac{2}{3}(x+2) \\
3 y-15 & =-2 x-4 \\
2 x+3 y & =11
\end{aligned}
$$

M1

A1
(b) $\operatorname{grad} l_{2}=\frac{-1}{-\frac{2}{3}}=\frac{3}{2}$ M1 A1
$\therefore y-1=\frac{3}{2}(x-4) \quad[3 x-2 y=10]$
(c) at $C, x=0 \therefore y=-5 \Rightarrow C(0,-5)$

A1
$A B=\sqrt{(4+2)^{2}+(1-5)^{2}}=\sqrt{36+16}=\sqrt{52}$
B1
$B C=\sqrt{(0-4)^{2}+(-5-1)^{2}}=\sqrt{16+36}=\sqrt{52}$
$A B=B C \therefore$ triangle $A B C$ is isosceles
A1
9. (a) 2

B1
(b) $1+\frac{2}{\sqrt{x}}=2$

M1
$\sqrt{x}=2$
M1
$x=4 \quad$ A
(c) $\quad x=4 \therefore y=2(4)-1=7$

B1
$y=\int\left(1+\frac{2}{\sqrt{x}}\right) \mathrm{d} x$
$y=x+4 x^{\frac{1}{2}}+c$
M1 A2
$(4,7) \quad \therefore 7=4+8+c$ $c=-5$

M1
$y=x+4 x^{\frac{1}{2}}-5$
A1
(d) $x+4 x^{\frac{1}{2}}-5=0$
$\left(x^{\frac{1}{2}}+5\right)\left(x^{\frac{1}{2}}-1\right)=0$
M1
$x^{\frac{1}{2}}=-5$ (no real solutions), $1 \quad$ A1
$x=1 \quad \therefore(1,0)$ and no other point
A1

Performance Record - C1 Paper G

Question no.	1	2	3	4	5	6	7	8	9	Total
Topic(s)	indices	inequal.	$\begin{array}{\|c} \hline \text { diff., } \\ \text { transform. } \end{array}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { quad. } \\ \text { formula, } \\ \text { rep. root } \end{array} \end{array}$	$\begin{gathered} \text { curve } \\ \text { sketch, } \\ \text { diff, } \\ \text { tangent } \end{gathered}$	$\begin{aligned} & \text { compl. } \\ & \text { square } \end{aligned}$	$\begin{array}{\|c} \hline \text { AP, } \\ \text { sequence } \end{array}$	$\begin{aligned} & \text { straight } \\ & \text { lines } \end{aligned}$	integr.	
Marks	3	4	6	7	10	10	11	11	13	75
Student										

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper H

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. AP: $a=7, l=94$

B1
$S_{30}=\frac{30}{2}(7+94)=15 \times 101=1515$
M1 A1 (3)
2. (a) $=(x+3)^{2}-9+7$

M1
$=(x+3)^{2}-2$
A2
(b) $(-3,-2)$

B1
(4)
3. (a)

B2 B1
(b) $\quad l_{1} \Rightarrow 6 x-2 y=0$
$l_{2}: \quad x+2 y-4=0$
adding $\quad 7 x-4=0, \quad x=\frac{4}{7} \quad$ M1 A1
\therefore intersect at $\left(\frac{4}{7}, \frac{12}{7}\right)$
A1
(6)
4. $5 x+y=7 \Rightarrow \quad y=7-5 x$
sub. into $3 x^{2}+y^{2}=21$
$3 x^{2}+(7-5 x)^{2}=21$
M1
$2 x^{2}-5 x+2=0$
A1
$(2 x-1)(x-2)=0$
M1
$x=\frac{1}{2}, 2$
A1
$\therefore\left(\frac{1}{2}, \frac{9}{2}\right)$ and $(2,-3)$
M1 A1
(7)
5. (a)

B3

B2
(b) the graphs intersect at exactly one point \therefore one solution

B1
(c) $n=4$

B1
(7)
6. (a)

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+2 \\
& \text { grad of tangent }=2 \\
& \text { grad of normal }=\frac{-1}{2}=-\frac{1}{2} \\
& \therefore y=-\frac{1}{2} x \\
& \text { M1 A1 } \\
& \text { A1 } \\
& \text { (b) } x^{2}+2 x=-\frac{1}{2} x \\
& 2 x^{2}+5 x=0, \quad x(2 x+5)=0 \\
& \text { M1 } \\
& x=0(\text { at } O),-\frac{5}{2} \\
& \therefore\left(-\frac{5}{2}, \frac{5}{4}\right) \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$

(8)
7. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}+2 x^{-\frac{3}{2}}$

M1 A2
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{4} x^{-\frac{3}{2}}-3 x^{-\frac{5}{2}}$

M1 A1
(c) LHS $=4 x^{2}\left(-\frac{1}{4} x^{-\frac{3}{2}}-3 x^{-\frac{5}{2}}\right)+4 x\left(\frac{1}{2} x^{-\frac{1}{2}}+2 x^{-\frac{3}{2}}\right)-\left(x^{\frac{1}{2}}-4 x^{-\frac{1}{2}}\right)$

$$
\begin{array}{ll}
=-x^{\frac{1}{2}}-12 x^{-\frac{1}{2}}+2 x^{\frac{1}{2}}+8 x^{-\frac{1}{2}}-x^{\frac{1}{2}}+4 x^{-\frac{1}{2}} & \text { M1 A1 } \\
=0 & \text { A1 } \tag{8}
\end{array}
$$

8.

$$
\text { (a) } \begin{aligned}
& S_{n}=1+2+3+\ldots+n \\
& S_{n}=n+(n-1)+(n-2)+\ldots+1 \\
& \text { adding, } \quad 2 S_{n}=n(n+1) \\
& \\
& \\
& \text { (b) } \quad S_{n}=\frac{1}{2} n(n+1) \\
& \text { (i) } \quad=S_{200}-S_{99} \\
& = \\
& =\frac{1}{2} \times 200 \times 201-\frac{1}{2} \times 99 \times 100 \\
& \\
& \text { (ii) } \quad=30100-4950=15150 \\
& =3 \times 15150=45450
\end{aligned}
$$

B1
M1

M1
M1
A1
M1 A1
(9)
9.
(i) $=16-24 \sqrt{2}+18=34-24 \sqrt{2}$
M1 A1
(ii) $=\frac{1}{2+\sqrt{2}} \times \frac{2-\sqrt{2}}{2-\sqrt{2}}$
M1
$=\frac{2-\sqrt{2}}{4-2}=1-\frac{1}{2} \sqrt{2}$
M1 A1
(b) (i) $y^{2}-9 y+8=0$
$(y-1)(y-8)=0$
M1
$y=1,8$
A1
(ii) let $y=x^{\frac{3}{2}} \Rightarrow y^{2}+8=9 y$

$$
\begin{array}{ll}
\therefore x^{\frac{3}{2}}=1,8 & \text { B1 } \\
x=1 \text { or }(\sqrt[3]{8})^{2} & \text { M1 } \\
x=1 \text { or } 4 & \text { A1 }
\end{array}
$$

(10)
10. (a) $\mathrm{f}(x)=\int\left(3 x^{\frac{1}{2}}-4 x^{-\frac{1}{2}}\right) \mathrm{d} x$

$$
\begin{aligned}
& \mathrm{f}(x)=2 x^{\frac{3}{2}}-8 x^{\frac{1}{2}}+c \\
& (0,0) \therefore c=0 \\
& \mathrm{f}(x)=2 x^{\frac{3}{2}}-8 x^{\frac{1}{2}}
\end{aligned}
$$

M1 A2
M1
A1
(b) $2 x^{\frac{3}{2}}-8 x^{\frac{1}{2}}=0$
$2 x^{\frac{1}{2}}(x-4)=0$
M1

$$
x=0(\text { at } O), 4 \therefore A(4,0)
$$

A1
(c) $\quad x=2 \quad \therefore y=2(2 \sqrt{2})-8(\sqrt{2})=-4 \sqrt{2}$

M1 A1
$\operatorname{grad}=3 \sqrt{2}-\frac{4}{\sqrt{2}}=3 \sqrt{2}-2 \sqrt{2}=\sqrt{2}$
M1 A1
$\begin{aligned} \therefore y & +4 \sqrt{2}=\sqrt{2}(x-2) \\ & y=\sqrt{2} x-6 \sqrt{2}\end{aligned}$
M1
$y=\sqrt{2} x-6 \sqrt{2} \quad$ A1

Performance Record - C1 Paper H

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	AP	$\begin{aligned} & \text { compl. } \\ & \text { square } \end{aligned}$	$\begin{aligned} & \text { straight } \\ & \text { lines } \end{aligned}$	$\begin{gathered} \text { simul. } \\ \text { eqn } \end{gathered}$	$\begin{aligned} & \text { curve } \\ & \text { sketch } \end{aligned}$	diff., normal	diff.	${ }_{\text {AP }}$	$\begin{aligned} & \text { surds, } \\ & \text { quad. } \end{aligned}$	integr., tangent	
Marks	3	4	6	7	7	8	8	9	10	13	75
Student											

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper I

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press

C1 Paper I - Marking Guide

1. $u_{k}=k^{2}-6 k+11=38$

$$
\begin{aligned}
& \therefore k^{2}-6 k-27=0 \\
& (k+3)(k-9)=0 \\
& k \geq 1 \quad \therefore k=9
\end{aligned}
$$

2. $=\frac{4}{3} x^{3}-\frac{2}{3} x^{\frac{3}{2}}+c$

M1 A2
3. $4 \sqrt{12}-\sqrt{75}=4(2 \sqrt{3})-5 \sqrt{3}=3 \sqrt{3}$

M1 A1 $=\sqrt{9 \times 3}=\sqrt{27}, \quad n=27$

M1 A1 (4)
4. (a) $=(6+\sqrt[4]{16})^{\frac{1}{3}}$

B1 M1
$=(6+2)^{\frac{1}{3}}=\sqrt[3]{8}=2$
A1
(b) $\frac{3}{\sqrt{x}}=4$

M1
$\sqrt{x}=\frac{3}{4}$
M1
$x=\frac{9}{16}$
A1
(6)
5. (a) $\mathrm{f}(x)=\int\left(-\frac{1}{x^{2}}\right) \mathrm{d} x$
$\mathrm{f}(x)=x^{-1}+c$
M1 A1
$(-1,3) \quad \therefore 3=-1+c$
$c=4$
M1
$\mathrm{f}(x)=x^{-1}+4$
A1
(b)

B2

asymptotes: $x=0$ and $y=4$
B1
(7)
6.
(a) $\mathrm{f}(x)=(x-5)^{2}-25+17$
M1
$\mathrm{f}(x)=(x-5)^{2}-8$
A2
(b) $(5,-8)$
B1
(c) (i) $(5,-4)$
B2
(ii) $\left(\frac{5}{2},-8\right)$
B2
(8)
7. (a) real roots $\therefore b^{2}-4 a c \geq 0$

$$
\begin{array}{ll}
(-k)^{2}-[4 \times 4 \times(k-3)] \geq 0 & \text { M1 } \\
k^{2}-16 k+48 \geq 0 & \text { A1 }
\end{array}
$$

(b) $(k-4)(k-12) \geq 0$

$k \leq 4$ or $k \geq 12$
A1
(c) $k=4$

B1
$4 x^{2}-4 x+1=0$
$(2 x-1)^{2}=0$
$x=\frac{1}{2}$
M1
A1
(8)
8. (a) (i) $a=3, a+2 d=27$

$$
\begin{aligned}
\text { (ii) } & =\frac{11}{2}[6+(10 \times 12)] \\
& =\frac{11}{2} \times 126=693
\end{aligned}
$$

M1 A1
(b) $\quad a=56, l=144$
$56+8(n-1)=144, n=12$
B1
$S_{12}=\frac{12}{2}(56+144)=6 \times 200=1200$
M1 A1
M1 A1
9. (a) $x^{3}-5 x^{2}+7 x=0$
$x\left(x^{2}-5 x+7\right)=0$
M1
$x=0$ or $x^{2}-5 x+7=0$

$$
b^{2}-4 a c=(-5)^{2}-(4 \times 1 \times 7)=-3
$$

M1
$b^{2}-4 a c<0 \quad \therefore$ no real roots
\therefore only crosses x-axis at one point
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-10 x+7$ M1 A1
grad of tangent $=27-30+7=4$
grad of normal $=\frac{-1}{4}=-\frac{1}{4}$
M1 A1
$\therefore y-3=-\frac{1}{4}(x-3)$
M1
$4 y-12=-x+3$
$x+4 y=15$
A1
(c) $x=0 \Rightarrow y=\frac{15}{4}$
$y=0 \Rightarrow x=15$
M1
area $=\frac{1}{2} \times \frac{15}{4} \times 15=\frac{225}{8}=28 \frac{1}{8}$
M1 A1
10. (a) $\operatorname{grad}=\frac{4-3}{3-(-1)}=\frac{1}{4}$

M1 A1
$\therefore y-3=\frac{1}{4}(x+1)$
M1
$4 y-12=x+1$
$x-4 y+13=0$
A1
(b) perp grad $=\frac{-1}{\frac{1}{4}}=-4$ M1
line through A, perp $l_{1}: \quad y-3=-4(x+1)$
M1

$$
y=-4 x-1
$$

A1
intersection with $l_{2}: x-4(-4 x-1)-21=0$
dist. A to $(1,-5)=\sqrt{x=1, \therefore(1,-5)} \quad \begin{array}{ll}(1+1)^{2}+(-5-3)^{2}\end{array}=\sqrt{4+64}=\sqrt{68} \quad$ M1 A1
\therefore dist. between lines $=\sqrt{68}=\sqrt{4 \times 17}=2 \sqrt{17} \quad[k=2] \quad$ A1
(c) $A B=\sqrt{(3+1)^{2}+(4-3)^{2}}=\sqrt{16+1}=\sqrt{17} \quad$ M1
area $=\sqrt{17} \times 2 \sqrt{17}=34 \quad$ A1

Performance Record - C1 Paper I

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	sequence	integr.	surds	indices	integr.	$\begin{gathered} \text { compl. } \\ \text { square, } \\ \text { transform. } \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { inotus, } \\ \text { inequal. } \end{array}$	${ }_{\text {AP }}$	diff, normal	$\begin{gathered} \text { straight } \\ \text { lines } \end{gathered}$	
Marks	3	3	4	6	7	8	8	10	13	13	75
Student											

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper J

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

C1 Paper J - Marking Guide

1. $\operatorname{grad} A B=\frac{-2-0}{5-(-3)}=-\frac{1}{4}$

M1 A1

$$
\begin{align*}
\therefore & y-1=-\frac{1}{4}(x-4) \\
& 4 y-4=-x+4 \\
& x+4 y=8 \tag{4}
\end{align*}
$$

M1

A1
2. $=\sqrt{\frac{45}{2}}=\frac{3 \sqrt{5}}{\sqrt{2}}$

M1 A1
$=\frac{3 \sqrt{5}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{3}{2} \sqrt{10}$
M1 A1
3. (a)

(b)

B3
4.
(a) $4 x-8<2 x+5$
$2 x<13$
M1
$x<6 \frac{1}{2}$
A1
(b) $\quad\left(2^{2}\right)^{y+1}=\left(2^{3}\right)^{2 y-1}$
M1
$2^{2 y+2}=2^{6 y-3}$
$2 y+2=6 y-3$
$y=\frac{5}{4}$
A1
M1
A1
(6)
5. (a) $t_{2}=3 k-7$
$t_{3}=k(3 k-7)-7=3 k^{2}-7 k-7$
B1
M1 A1
(b) $3 k^{2}-7 k-7=13$
$3 k^{2}-7 k-20=0$
$(3 k+5)(k-4)=0$
M1
$k=-\frac{5}{3}, 4$
A2
(6)
6. $x=2 \therefore y=\sqrt{16}=4$

B1
$y=\sqrt{8} \sqrt{x}=2 \sqrt{2} x^{\frac{1}{2}}$
B1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{2} x^{-\frac{1}{2}}$
M1 A1
$\operatorname{grad}=\frac{\sqrt{2}}{\sqrt{2}}=1$
$\therefore y-4=1(x-2) \quad[y=x+2]$
M1 A1
7. (a) $a=20 \times 7=140, d=2 \times 7=14$
$u_{5}=140+(4 \times 14)=196$
M1 A1
(b) $S_{8}=\frac{8}{2}[280+(7 \times 14)]=4 \times 378=1512$

M1 A1
(c) $140+14(n-1)>300$

M1
$n>\frac{160}{14}+1$
$n>12 \frac{3}{7} \quad \therefore n=13$
A1
(8)
8. (a)

$t=0, A=4 \quad \Rightarrow$	$4=p^{2}$	M1
	$p>0 \quad \therefore p=2$	A1
$t=5, A=9 \quad \Rightarrow$	$9=(2+5 q)^{2}$	M1
	$2+5 q= \pm 3$	
	$q=\frac{1}{5}(-2 \pm 3)$	M1
	$q>0 \therefore q=\frac{1}{5}$	A1

(b) $A=\left(2+\frac{1}{5} t\right)^{2}=4+\frac{4}{5} t+\frac{1}{25} t^{2}$

M1 A1
$\frac{\mathrm{d} A}{\mathrm{~d} t}=\frac{4}{5}+\frac{2}{25} t$
M1 A1
(c) $t=15 \therefore \frac{\mathrm{~d} A}{\mathrm{~d} t}=\frac{4}{5}+\frac{2}{25}(15)=2 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$

M1 A1
9. (a) $x^{2}+2 x+4=(x+1)^{2}-1+4$

$$
=(x+1)^{2}+3
$$

A1
minimum: $(-1,3)$
(b)

(c) $x^{2}+2 x+4=8-x$
$x^{2}+3 x-4=0$
$(x+4)(x-1)=0$
M1
$x=-4,1$
A1
$\therefore(-4,12)$ and $(1,7)$
M1 A1
10. (a) $y=\int\left(3-\frac{2}{x^{2}}\right) \mathrm{d} x$

$$
\begin{aligned}
& y=3 x+2 x^{-1}+c \\
& (2,6) \therefore \quad 6=6+1+c
\end{aligned}
$$

M1 A2

$$
c=-1
$$

M1
$c=-1$
$y=3 x+2 x^{-1}-1$
A1
(b) $\operatorname{grad}=3-\frac{1}{2}=\frac{5}{2}$

M1 A1
$y-6=\frac{5}{2}(x-2)$
M1
$2 y-12=5 x-10$
$5 x-2 y+2=0$
A1
(c) $3 x+2 x^{-1}-1=x+3$
$3 x^{2}+2-x=x^{2}+3 x$
M1
$x^{2}-2 x+1=0$
$(x-1)^{2}=0$, repeated root \therefore tangent
M1 A1

Performance Record - C1 Paper J

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	$\begin{aligned} & \text { Straight } \\ & \text { line } \end{aligned}$	surds	transform.	$\begin{array}{\|l} \hline \begin{array}{l} \text { inequal., } \\ \text { indices } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { recur. } \\ \text { relation } \end{array}$	$\begin{gathered} \text { diff., } \\ \text { tangent } \end{gathered}$	${ }_{\text {AP }}$	diff., rate of change	$\begin{aligned} & \text { compl. } \\ & \text { square, } \\ & \text { curve } \\ & \text { sketch } \end{aligned}$	integr., tangents	
Marks	4	4	6	6	6	7	8	11	11	12	75
Student											

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper K

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press

C1 Paper K - Marking Guide

1. $\left(2^{2}\right)^{y+3}=2^{3}$

M1
$2 y+6=3$
$y=-\frac{3}{2}$
(3)
2. $=\int\left(3 x^{2}+\frac{1}{2} x^{-2}\right) \mathrm{d} x$

B1
$=x^{3}-\frac{1}{2} x^{-1}+c$
M1 A2
(4)
3. $\frac{E H}{A D}=\frac{E F}{A B} \quad \therefore \frac{E H}{\sqrt{5}}=\frac{1+\sqrt{5}}{3-\sqrt{5}}$

M1
$\frac{1+\sqrt{5}}{3-\sqrt{5}}=\frac{1+\sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}=\frac{3+\sqrt{5}+3 \sqrt{5}+5}{9-5}=2+\sqrt{5} \quad$ M2 A1
$\therefore E H=\sqrt{5}(2+\sqrt{5})=5+2 \sqrt{5} \quad$ M1 A1
(6)
4. (a)

B2
B2
(b) 3 solutions

B1
$x^{2}-4 x+\frac{1}{x}=0 \Rightarrow x^{2}-4 x=-\frac{1}{x}$
and the graphs of $y=x^{2}-4 x$ and $y=-\frac{1}{x}$ intersect at 3 points \quad B1
(6)
5. (a)

$$
\begin{aligned}
& (x+k)^{2}-k^{2}+4=0 \\
& (x+k)^{2}=k^{2}-4 \\
& x+k= \pm \sqrt{k^{2}-4} \\
& x=-k \pm \sqrt{k^{2}-4}
\end{aligned}
$$

M1
A1
M1
A1
(b) $\quad k=3 \quad \therefore x=-3 \pm \sqrt{3^{2}-4}$

M1

$$
=-3 \pm \sqrt{5}
$$

A1
(6)
6. (a) AP: $a=77, l=-70$

B1

$$
S_{50}=\frac{50}{2}[77+(-70)]=25 \times 7=175
$$

M1 A1
(b) AP: $a=2, d=\frac{1}{2}$

B2
$S_{n}=\frac{n}{2}\left[4+\frac{1}{2}(n-1)\right]$
$=\frac{1}{4} n[8+(n-1)]=\frac{1}{4} n(n+7) \quad\left[k=\frac{1}{4}\right]$
M1
A1
7. $x-3 y+7=0 \Rightarrow x=3 y-7$
sub. into $x^{2}+2 x y-y^{2}=7$

$$
\begin{gathered}
(3 y-7)^{2}+2 y(3 y-7)-y^{2}=7 \\
y^{2}-4 y+3=0 \\
(y-1)(y-3)=0 \\
y=1,3 \\
\therefore x=-4, y=1 \text { or } x=2, y=3
\end{gathered}
$$

M1

M1
A1
M1
A1
M1 A1
8. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=1-4 x^{-3}$

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=12 x^{-4}
$$

M1 A1
(b) $y=\int\left(1-4 x^{-3}\right) \mathrm{d} x$
$y=x+2 x^{-2}+c$
M1 A2
$x=-1, y=0 \quad \therefore 0=-1+2+c$
$c=-1$
M1
$y=x+2 x^{-2}-1$
when $x=2, y=2+\frac{1}{2}-1=\frac{3}{2}$
M1 A1 (9)
9. (a) $y=x-6 \sqrt{x}+9$

M1 A1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=1-3 x^{-\frac{1}{2}}=1-\frac{3}{\sqrt{x}}$
M1 A1
(b) $x=4 \therefore y=1$
grad of tangent $=1-\frac{3}{2}=-\frac{1}{2}$
M1
grad of normal $=\frac{-1}{-\frac{1}{2}}=2$
M1 A1
$\therefore y-1=2(x-4)$
M1
$y=2 x-7$
A1
(c) at intersect: $x-6 \sqrt{x}+9=2 x-7$

$$
\begin{array}{ll}
x+6 \sqrt{x}-16=0 & \text { M1 } \\
(\sqrt{x}+8)(\sqrt{x}-2)=0 & \text { M1 } \\
\sqrt{x}=-8,2 & \text { A1 }
\end{array}
$$

$\sqrt{x}=2 \Rightarrow x=4($ at $P)$
$\sqrt{x}=-8 \Rightarrow$ no real solutions \therefore normal does not intersect again
A1
10. (a) $y-4=3(x+6)$
$y=3 x+22$
A1
(b) at $B, \quad x=0 \quad \therefore y=2 \quad \Rightarrow \quad B(0,2)$

B1
at $C, \quad x-7(3 x+22)+14=0$
M1
$x=-7$
A1
$\therefore C(-7,1)$
A1
(c) $\operatorname{grad} A B=\frac{2-4}{0-(-6)}=-\frac{1}{3}$ M1 A1
$\operatorname{grad} A C=\frac{1-4}{-7-(-6)}=3$
$\operatorname{grad} A B \times \operatorname{grad} A C=-\frac{1}{3} \times 3=-1$
$\therefore A B$ perp to $A C \therefore \angle B A C=90^{\circ}$
(d) $A B=\sqrt{(0+6)^{2}+(2-4)^{2}}=\sqrt{36+4}=\sqrt{40}=2 \sqrt{10}$

M1 A1
$A C=\sqrt{(-7+6)^{2}+(1-4)^{2}}=\sqrt{1+9}=\sqrt{10}$
area $=\frac{1}{2} \times 2 \sqrt{10} \times \sqrt{10}=10$

Performance Record - C1 Paper K

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	indices	integr.	surds	$\begin{aligned} & \text { curve } \\ & \text { sketch } \end{aligned}$	$\begin{aligned} & \text { compl. } \\ & \text { square } \end{aligned}$	${ }_{\text {AP }}$	$\begin{gathered} \text { simul. } \\ \text { eqn } \end{gathered}$	$\begin{array}{\|l} \hline \text { diff., } \\ \text { integr. } \end{array}$	diff. normal	$\begin{gathered} \text { straight } \\ \text { lines } \end{gathered}$	
Marks	3	4	6	6	6	7	7	9	13	14	75
Student											

GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Paper L

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

C1 Paper L - Marking Guide

1. $\begin{aligned} & =\sqrt{49}+(\sqrt[3]{8})^{2}=7+2^{2} & & \text { B1 M1 } \\ & =11 & & \text { A1 }\end{aligned}$

A1
(3)
2. (a) $u_{4}=\frac{5+1}{3}=2$

B1
(b) $5=\frac{u_{2}+1}{3}, u_{2}=14$
$14=\frac{u_{1}+1}{3}, u_{1}=41$
M1 A1
A1
(4)
3. (a) $b^{2}-4 a c=12^{2}-(4 \times 4 \times 9)=0$

M1
$\therefore 1$ real root
A1
(b) $4 x^{2}+12 x+9=8$
$4 x^{2}+12 x+1=0$
$x=\frac{-12 \pm \sqrt{144-16}}{8}$
M1
$=\frac{-12 \pm 8 \sqrt{2}}{8}$
M1
$=-\frac{3}{2} \pm \sqrt{2}$
A2
(6)
4. (a) $5 x>15$

M1
$x>3$
A1
(b) $(x+2)(x-8)<0$

(c) $3<x<8$

B1
(6)
5. (a) $(2-\sqrt{x})^{2}=0$
$\sqrt{x}=2$
M1
$x=4$
A1
(b) $=(2-\sqrt{3})^{2}=4-4 \sqrt{3}+3=7-4 \sqrt{3}$

M1 A1
(c) $=\int(2-\sqrt{x})^{2} d x$
$=\int(4-4 \sqrt{x}+x) d x$
B1
$=4 x-\frac{8}{3} x^{\frac{3}{2}}+\frac{1}{2} x^{2}+c$
M1 A2
6. (a) $\operatorname{grad}=\frac{-4-6}{1-(-3)}=-\frac{5}{2}$

M1 A1
$\therefore y-6=-\frac{5}{2}(x+3)$
M1
$2 y-12=-5 x-15$ $5 x+2 y+3=0$

A1
(b) $m: y=-\frac{2}{k} x-\frac{7}{k} \quad \therefore \operatorname{grad}=-\frac{2}{k}$

M1 A1
l and m perp. $\therefore \quad-\frac{5}{2} \times-\frac{2}{k}=-1$
M1
$k=-5$
A1
(8)
7. (a) $\mathrm{f}(x)=\int\left(5+\frac{4}{x^{2}}\right) \mathrm{d} x$

$$
\mathrm{f}(x)=5 x-4 x^{-1}+c \quad \text { M1 A2 }
$$

(b) $\mathrm{f}(1)=5-4+c=1+c$
$\mathrm{f}(2)=10-2+c=8+c$
$\mathrm{f}(2)=2 \mathrm{f}(1) \quad \therefore \quad 8+c=2(1+c)$
M1
A1
$\mathrm{f}(x)=5 x-4 x^{-1}+6$
$f(4)=20-1+6=25$
M1 A1
8. (a)

$$
\begin{aligned}
\text { LHS } & =(x+1)\left(x^{2}-7 x+12\right) \\
& =x^{3}-7 x^{2}+12 x+x^{2}-7 x+12 \\
& =x^{3}-6 x^{2}+5 x+12=\text { RHS }
\end{aligned}
$$

M1
(b)

(c) (i)

(ii)

B2 B2
9. (a) (i) $=\left(t^{2}-5\right)-(t-1)=t^{2}-t-4$
(ii) $=\left(t^{2}-5\right)+\left(t^{2}-t-4\right)=2 t^{2}-t-9$

M1 A1
M1 A1
(b) $2 t^{2}-t-9=19$
$2 t^{2}-t-28=0$
$(2 t+7)(t-4)=0$
$t>0 \quad \therefore t=4$
M1
A1
(c) $\quad a=4-1=3, d=16-4-4=8$
$u_{10}=3+(9 \times 8)=3+72=75$
B1
M1 A1
(d) $=\frac{40}{2}[6+(39 \times 8)]=20 \times 318=6360$

M1 A1
10. (a) $A(0,2)$

B1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=3-2 x$
M1 A1
$\operatorname{grad}=3$
$\therefore y=3 x+2$
M1
A1
(b) grad of $m=3$
grad of curve at $B=\frac{-1}{3}=-\frac{1}{3}$
M1 A1
at $B: \quad 3-2 x=-\frac{1}{3}$
$x=\frac{5}{3}$
M1 A1
$y=2+3\left(\frac{5}{3}\right)-\left(\frac{5}{3}\right)^{2}=4 \frac{2}{9} \quad \therefore B\left(1 \frac{2}{3}, 4 \frac{2}{9}\right)$
M1 A1
Performance Record - C1 Paper L

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	indices	recur. relation	quad. formula	inequals	surds, integr.	straight lines	integr.	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { curve } \\ \text { sketch, } \\ \text { transform. } \end{array} \\ \hline \end{array}$	AP	diff., tangent	
Marks	3	4	6	6	8	8	8	10	11	11	75
Student											

